On some properties of the Attractor Equations

نویسندگان

  • Stefano Bellucci
  • Sergio Ferrara
  • Alessio Marrani
چکیده

We discuss the Attractor Equations of N = 2, d = 4 supergravity in an extremal black hole background with arbitrary electric and magnetic fluxes (charges) for field-strength two-forms. The effective one-dimensional Lagrangian in the radial (evolution) variable exhibits features of a spontaneously broken supergravity theory. Indeed, non-BPS Attractor solutions correspond to the vanishing determinant of a (fermionic) gaugino mass matrix. The stability of these solutions is controlled by the data of the underlying Special Kähler Geometry of the vector multiplets’ moduli space. Finally, after analyzing the 1-modulus case more in detail, we briefly comment on the choice of the Kähler gauge and its relevance for the recently discussed entropic functional.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$

We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions  $ u(x,0) = u_0 (x)$  and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ;  f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...

متن کامل

First-order attractor flow equations for supersymmetric black rings in N=2, D=5 supergravity

In this paper we investigate the attractor mechanism in the five dimensional low energy supergravity theory corresponding to M-theory compactified on a Calabi-Yau threefold CY3. Using very special geometry, we derive the general first-order attractor flow equations for BPS and non-BPS solutions in five-dimensional Gibbons-Hawking spaces. Especially, considering the supersymmetric solution, we o...

متن کامل

Some properties of solutions for a class of metaparabolic equations ∗

In this paper, we study the initial boundary value problem for a class of metaparabolic equations. We establish the existence of solutions by the energy techniques. Some results on the regularity, blow-up and existence of global attractor are obtained.

متن کامل

Attractors and neo-attractors for 3D stochastic Navier-Stokes equations

In [14] nonstandard analysis was used to construct a (standard) global attractor for the 3D stochastic Navier–Stokes equations with general multiplicative noise, living on a Loeb space, using Sell’s approach [26]. The attractor had somewhat ad hoc attracting and compactness properties. We strengthen this result by showing that the attractor has stronger properties making it a neo-attractor – a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006